Simulating the fine and coarse inorganic particulate matter concentrations in a polluted Megacity

نویسندگان

  • Vlassis A. Karydis
  • Alexandra P. Tsimpidi
  • Christos Fountoukis
  • Athanasios Nenes
  • Miguel Zavala
  • Wenfang Lei
  • Luisa T. Molina
  • Spyros N. Pandis
چکیده

A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1-10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China.

Using size-resolved filter sampling and chemical characterization, high concentrations of water-soluble ions, carbonaceous species and heavy metals were found in both fine (PM2.1) and coarse (PM2.1-9) particles in Beijing during haze events in early 2013. Even on clear days, average mass concentration of submicron particles (PM1.1) was several times higher than that previously measured in most ...

متن کامل

Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) ...

متن کامل

Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the ...

متن کامل

Artificial neural network forecast application for fine particulate matter concentration using meteorological data

Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...

متن کامل

Effects of Alfalfa Particle Size on Ensalivation Rate, Chewing Efficiency, and Functional Specific Gravity of Particulate Matter in Hereford Steers

Six ruminally fistulated Hereford steers (body weight=414±13 kg) were used in a switch back design to determine whether two particle sizes of alfalfa hay (18.75 and 4.65 mm theoretical cut length) influenced salivary secretion during eating. The experiment carried out in two 26-d periods, with 11-d of adaptation to ration, followed by 5 d for determining the level of voluntary feed intake, 7-d ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009